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Exactly solvable sandpile with fractal avalanching
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A simple one-dimensional sandpile model is constructed which possesses exact analytical solvability while
displaying both scale-free behavior and fractal properties. The sandpile grows by avalanching on all scales, yet
its shape and energy content are described by a simple, contilbousowhere differentiabjeanalytical
formula. The avalanche energy distribution and the avalanche time series are both power laws withlindex
(“1/f spectra’). [S1063-651X99)00306-2

PACS numbd(s): 05.65+b, 45.05+x, 05.40—a

In this paper, we describe a very simple one-dimensionahamics, we can take, =0, and refer to this state as “flat.”
sandpile model which possesses exact analytical solvabilitfhus the first step in the redistribution process is
while displaying both fractal properties and a behavior of a . ix
type sometimes identified as self-organized critical8p0 hy =hn 1=(hy+hpi1)/2,
[1,2]. In contrast to most sandpile algorithms in the litera-
ture, the model described in the present paper is complete
deterministic. Neither the fueling nor the redistribution of

IWhere an asterisk denotes values after redistribution. The
%’Iopes then become

material within the pile contains any randomness. Our objec- * = +2z./2
L i Zn_1=Zn-11 Zl4,
tive is to show that, even though the growth of the sandpile

can be regarded as a manifestation of SOC, its detailed be- z¥=0,
havior can be understood analytically. The sandpile grows in

a self-similar—indeed fractal—manner, and the time evolu- Zr =202+ 2041,

tion of its shape and energy storage is described by a simple,

continuous(but nowhere differentiabjeanalytical formula as in conventional sandpile algorithms. However, if either of

which we derive. the neighboring nodes,—1 orn+ 1, now becomes unstable,
The model represents a sandpile fueled, one grain at #e behavior of our model differs from most algorithms in

time, at its first noden=1. The number of nodes is semi- the literature. For instance, if the node- 1 is unstable, the

infinite, 1<n<co, so that the sandpile can build and spreadSubsequent redistribution occurs in such a way as to flatten

indefinitely by avalanching as the fueling continues. Theth€entireunstable regiofin,n+1] while conserving the to-

model shares many standard features of sandpile algorithm&! number of sand grains, i.e., the heights become

when the height difference between two neighboring nodes h*=h*. . =h*.=(h +h,.,+h, )3

gives rise to a local gradiert,=h,—h,, that exceeds a no il 2 A il T 270

critical gradientz, this triggers a local redistribution of sand and the slopes

to flatten the gradient at the node This redistribution may

then steepen the slope at nearby nodes, triggering further Zr =2z, 1+22,/3+ 2,413,
redistribution. Thus the local critical gradient condition, plus

local redistribution, can give rise to global avalanches. The z,=2z;,,=0,
redistribution is regarded as instantaneous, so that the next

grain is added only when the redistribution is complete, with Zr =23+ 22,1134 21 5.

z,<z. for all n. In our model, we set the final gradient at

each node that has participated in an avalanche to the andliethis makes either of the nodes- 1 andn+ 2 unstable, the

of reposez, , which is smaller thaz. . In other words, if an  redistribution continues in a similar manner until the pile has

avalanche occurs in a given time stefi, nodes that partici- relaxed to a completely stable state. The relaxation is as-

pate in that avalanche then relax2g=2z, . In this respect, sumed to occur on a time scale faster than that of external

the algorithm differs from the standard sandpile models infueling, so that no sand is added to the pile until it has re-

the literaturg/1,2]. laxed to a stable state. Note that the amount of sand in the
To understand how the algorithm works in detail, supposepile is conserved in the redistribution process.

a certain node becomes unstable because of the addition of The present model can be viewed as a special case of a

a grain of sand. As in conventional sandpile algorithms,more general sandpile algorithm that we have described ear-

some material then falls down to the next position, so thatier [3]. The latter includes a free parametethat permits a

the slopez,, is reduced to the angle of repoge As the sand probabilistic spread in the value af, and yields interesting

below the angle of repose plays no part in the sandpile dyresults with potentially wide physical applicatiofig—6].
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The sandpile considered in the present paper is equivalent to

that of Ref.[3] in the particularly simple limit where the 2

critical gradient is sharply definehe limit y— ). O
The fueling is assumed to occur only at the nodel. = 1

Thus neither the redistribution nor the fueling contains any 0.5

randomness, and the system is completely deterministic. The 0

0 02 04 06 08 1

dynamics of the sandpile is then analytically tractable and N

can be deduced from two basic consideratignsEach ava-
lanche begins at the first node of the pites 1. (ii) The pile FIG. 1. The shape of the sandpile just after the avalanche at
can only conquer new ground, i.e., spread to previously un=3ny2.

occupied positions at largge by an avalanche involving the

last position in the existing pile. Immediately after an ava-the flattened pile. At the time= 2N, this pile experiences an
lanche, the pile is completely flat at all previously unstableayalanche which is at first identical to that which occurred at
nodes. Thus after an avalanche involving the nodem1 (=N, put when it reaches the noderat N, this node now
<N, all these nodes hawg,=0, andzy is increased by the pecomes unstable. The underlying materialnatN then
amount necessary to keep constant the total mass of thgarts participating in the avalanche, which does not stop

sandpile, until the pile has spread to=2N, because the amount of
oc o o sand in the pile is now exactly twice that in the systent at
E hy= E 2 7= E nz,. =N, and the flnal_statg is flattened everywhere. The energy
n=1 n=1 j=n n=1 after the event at=2N is therefore

In this case the redistribution rules imply Ejy=2N.

=0, O0=n<N, . ) o
Now let us follow this chain of thought backwards in time. It

1 N is clear that an avalanche involving the entire pile doubles its
== > nz,, width (the number of positions witth,>0). Immediately
N =1 beforet=N, the pile therefore had a width /2, and im-
mediately beforeg=N/2 its width wasN/4, and so on. As
Yhas already been described, during the time inteNalt
<2N, a pile the same as that created duringt8<N builds

whereN is chosen as the smallest integer for which this ne
zy does not exceed.. Note that the division byN implies

thatzy cannot be cqnstrained to be an integer. . . up on top of the flattened pile createdtatN, for which
In order for the pile to spread horizontally, the entire p|Ieh =1, 1=n<N. By analogy, it then follows that immedi-

must be involved in an avalanche. Suppose that the numb _ - ; «
of occupied nodesthe “width” of the pile) immediately %tjtjely aftert=3N/2, the sandpile consists of a flat “ground

floor” of width N, upon which rests a smaller flat pile of

after an avalanche that completely flattens the pile is equal WQidth N/2 and unit heightsimilar to that which existed at
N>1, and that this number is considerably smaller than the_ N/2)—see Fig. 1. Further addition of sand beyonhd

Paxnpum a:LOmEd Vé'dthspf th?hplléglo 'gha:ctl tth.eref[r:s N0 IN- " _3Ny2 builds on top of this second, or “first floor,” story.
eraction wi e edge Since the pile is flat in the region The process iterates in a self-similar manner, and it is

1=n<N, the heights at all these positions are identical, an%lear that just before the system-wide avalanche=a2N

V<VE;\I nor(rjnr?llieo t?em ;ONur_‘Iltﬁ/ it tthl's t'mdﬂ“t:% ford1§nth the pile is as shown in Fig. 2. It consists of a flat, ground
i 'anth n— Olrtgxl .d the ota amofutr;] 0 _lsa!" N € fioor of lengthN; on top of that there is a first floor of length

piie 1s then equal TN, and the energy ot the piie 1S N/2; on top of this rests a second floor of length; and so

N on. All these stories are of unit height. Analogously, just
EﬁzE h2=N. beforet=N, the sandpile had the same shape, but with all
1 horizontal dimensions scaled down by a factor of 2.

I . To describe the shape of the sandpile at arbittaiy is
The pile is assumed to be fueled by grains of sand muchgeg) tq pass to the continuum limit, whexeis very large

smaller than unity, and for convenience we also normalizeand the horizontal coordinate along the pii¢ can be de-

the unit of time to the rate of fueling, so that one unit of santgne g 45 4 continuous variable replacing the former discrete
is added in unit time(This corresponds to a large number of

grains) Thus the avalanche that we have just described oc-
curs at the timeé=N after the fueling began.

When the fueling ah=1 commences again &t-N, the
newly added sand builds a pile on top of the already existing,
flattened pile. As long as no subsequent avalanche reaches
the positionn=N, the dynamics of this buildup is exactly
the same as that before the avalanche, since the redistribution 0 02 04 06 08 I
algorithm is independent of the absolute heidfite redis- WN
tribution rules are unaffected by a transformatiop—h,
+const.) In other words, a pile identical to that before the FIG. 2. The shape of the sandpile just before the system-wide
system-wide avalanche builds up across the upper surface afalanche at=2N.

h(n)
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node labeh. We scalex so that the pile occupies the interval 3

0<x<1 just aftert=N, and introduce a normalized unit of 25

time s, such thas=1 whent=N. The shape of the sandpile = 2

can then be related to the binary representatiors of a w13

simple way. The instant just aftée=N corresponds tcs 05]

=1.0, while the instant just before=N corresponds tes "0

=0.111 ... . If we leth(x,s) represent the height of the 0 02 04 06 08 I
sandpile, we have s

h(x,1.00=1, 0<x<l1, FIG. 3. The energy of the sandpile vs normalized tifq. (2)].

while ats=0.111... thepile resembles an infinitely high we can write the energy as
staircase with increasingly narrow steps, as in Fig. 2, and its

h(x,0111...)=n, 2 " D<x<2™" (0<n=wx).

eg_he first term describes the average, linear increase of energy
with time, and the second the fluctuations, including ava-
lanches, which occur at every instant of time. Indeed, an
* avalanche occurs whenever a digjitin the binary represen-
s= Z sp2 ", tation ofs changes, and the size of the avalanche is related to
k. Large avalanches are associated with sikafimall ones
with large k. Figure 3 shows a plot of energy versus time.
Note that it is a continuous, but nowhere differentiable, func-
tion.
Let us now determine the distribution function of ava-
h(x,s)=> s, 2 (MY<x<27 (1) lanche sizes. It follows from Ed2) that the energy released
I=n in the avalanche a=1 is equal to unity,

We are now in a position to calculate the normalized energy
of the pile as a function of time, AE(})=E(0.0111 ...)—E(0.10® ...)=1.

By the same argument we may use the binary series expr
sion for an arbitrary time,

wheres,=0 for all n smaller than some finite integer, to
write the shape of the pile as

E(s):f h2(x,s)dx, It follows from the self-similarity argument above, and also
0

from Eq.(2), that the avalanche at=1 dissipates half of this

1y __ 1
by summing the contributions from each horizontal segmenE€rgy;AE(3)=3z. On the other hand, the avalanchesat

2-(HD<x<271 Since the width of such a segment is =32 s exactly as large as that st 2 since the only differ-
2-(+1) the total energy of the pile is ence is that they cause spreading across “floors” at different

heights: the avalanche at=3 spreads the sandpile on the
2 ground, whereas that at=3 occurs on the “first floor” but
) is otherwise the same. Figure 4 shows the energy released in
avalanchesAE, as a function of time, and it is clear that

E(s)= 2, 2—<”+1>(2 Sj

n<o j=<n

By writing this sum as
AE(s)=2'"",

n<o

E(s)= > 2~V
i<n

Sj+22 Sk) . L L .
k<] wheren is the position of the leftmost digit in the binary
representation of that changes at the time of the avalanche,
D i.e., the smallest integer such tigt=1 for all k>n. It also
sj+22, s, f . .
<j ollows that avalanches of any particular size are exactly
twice as common as those of twice that size. The probability
and noting thasf:sj sinces;=0 or 1, the summations with distribution of avalanche sizes is thus an inverse power law

= 2 S]E 27(n+1)

<= h=]

respect ton can be evaluated, giving distribution,

E(s)=s+22, 270> 5. !

j<ew >k 0.8

w 06

Finally, interchanging the summation with respect tmdk, <04

and definind s], as the value of when truncated t& binary 0.2
places, ‘I‘I.l‘.I.’.I..I.i.l..l.‘.l.
0 02 04 06 08 1

. s
[sh=2 527,

=k FIG. 4. Energy release in avalanches vs normalized time.
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P(AE)x1/AE. (the coefficients of the Fourier serjesf the avalanches in
the finite sandpile, is an inverse power law. To see this, we

Since in our model the sandpile grows indefinitely across amake a finite sandpile of the type we have just discussed, of
infinite “table,” it never reaches a steady state. If the systemength} <L <1, so that the period is equal to unity. Consider
was finite, with an open boundary at=L, the behavior the infinite series of functions representing the energy re-
would be periodic with a period equal to the smallest poweleased in the sequence of avalanches shown in Fig. 4,
of 2 larger tharL. For example, suppose'2t<L <2N; for
s< 2N the system would behave as described above, while aly(s)=28(s)+ 8(s—1/2)+ 3[ 8(s— 1/14) + 5(s— 3/4)]
s=2N a major avalanche would completely empty the sand- .
pile. Hence the period would beM2 It is worth noting that +32[6(s—1/8)+ 6(s—3/8) + 6(s—5/8) + 6(s—7/8) ]
the energy dissipated in this avalancheAiE=2""1, and .
thus scales linearly, rather than quadratically, with the sys- '
tem sizeL. This has do to with the fact that the average
height of the sandpile does not increase with(Half the
time the height of the pile is 1, one quarter of the time it is 2,
and so on, independently af) As the massfh(x,t)dx of 1
the pile increases linearly with time, the mass leaving the Cn:f q(s)e"™sds,
system in each system-emptying avalanche is equal to the 0
period, which is ' and thus scales linearly with.

Not only the energy distribution of the internal ava- By rearranging the terms in the expression d¢s), we ob-
lanches, but also the Fourier spectrum in the time domaitain

The Fourier series representation of this periodic function
has coefficients

® 2N-1
Cn:l+ %(l+einﬁ/2)+ 4;(1+ein77/4+ e2inw/4+ e3in77/4)+_ R 2 27N 2 exqikn’ﬂziN).
N=0 k=0
|
It follows from this expression that, vanishes ifn is even, Most sandpile models in the literature are difficult to ana-
and is equal to lyze analytically, so that much of the present understanding
21-N of sandpile models is derived from numerical simulations. In

CnZE

T 1—expinm2™ V)

this paper, we have constructed a simple mathematical model
of a sandpile that shares many features of the conventional
models, such as external fueling, uniform and invariant criti-
cal gradient, local redistribution, and post-avalanche flatten-
- ing at participating nodes. The pile grows by fractal ava-
1—expiinm2™N)  n#’ lanching on all scales, and yet is completely analytically
tractable. This result sheds some light on the links between
this sum does not converge, and, strictly speaking, the Fouandpile model$7,8] self-organized criticalityf 9—11] pre-
rier series representation does not exist in the continuundictability, fractality, and determinisiii2—14. Equation(1)
limit we are considering where the sand grains are infinitesiabove gives the shape of the sandpile at any time, anEq.
mally small. However, if the grains added to the pile have arepresents its energy. The latter yields a time series that com-
small but finite size, the sum should be truncated at sombines fractal and scale-free properties, sometimes taken as
large but finiteN corresponding to this size, and it follows evidence for SOC. For instance, both the avalanche energy
from the above that,x1/n. In other words, the Fourier distribution and the finite-sandpile avalanche time series
coefficients of the finite-sandpile avalanche energy signahave 1f spectra. We have shown that this system can be
follow a power law with index-1 (a “1/f spectrum’) inthe  understood completely without implementing a numerical
time domain. cellular automaton algorithm.

for odd n. Since
21N 2i

lim

N— oo
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