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Exactly solvable sandpile with fractal avalanching
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A simple one-dimensional sandpile model is constructed which possesses exact analytical solvability while
displaying both scale-free behavior and fractal properties. The sandpile grows by avalanching on all scales, yet
its shape and energy content are described by a simple, continuous~but nowhere differentiable! analytical
formula. The avalanche energy distribution and the avalanche time series are both power laws with index21
~‘‘1/ f spectra’’!. @S1063-651X~99!00306-2#

PACS number~s!: 05.65.1b, 45.05.1x, 05.40.2a
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In this paper, we describe a very simple one-dimensio
sandpile model which possesses exact analytical solvab
while displaying both fractal properties and a behavior o
type sometimes identified as self-organized criticality~SOC!
@1,2#. In contrast to most sandpile algorithms in the liter
ture, the model described in the present paper is comple
deterministic. Neither the fueling nor the redistribution
material within the pile contains any randomness. Our ob
tive is to show that, even though the growth of the sandp
can be regarded as a manifestation of SOC, its detailed
havior can be understood analytically. The sandpile grow
a self-similar—indeed fractal—manner, and the time evo
tion of its shape and energy storage is described by a sim
continuous~but nowhere differentiable! analytical formula
which we derive.

The model represents a sandpile fueled, one grain
time, at its first node,n51. The number of nodes is sem
infinite, 1<n,`, so that the sandpile can build and spre
indefinitely by avalanching as the fueling continues. T
model shares many standard features of sandpile algorith
when the height difference between two neighboring no
gives rise to a local gradientzn5hn2hn11 that exceeds a
critical gradientzc , this triggers a local redistribution of san
to flatten the gradient at the noden. This redistribution may
then steepen the slope at nearby nodes, triggering fur
redistribution. Thus the local critical gradient condition, pl
local redistribution, can give rise to global avalanches. T
redistribution is regarded as instantaneous, so that the
grain is added only when the redistribution is complete, w
zn,zc for all n. In our model, we set the final gradient
each node that has participated in an avalanche to the a
of reposezr , which is smaller thanzc . In other words, if an
avalanche occurs in a given time step,all nodes that partici-
pate in that avalanche then relax tozn5zr . In this respect,
the algorithm differs from the standard sandpile models
the literature@1,2#.

To understand how the algorithm works in detail, suppo
a certain noden becomes unstable because of the addition
a grain of sand. As in conventional sandpile algorithm
some material then falls down to the next position, so t
the slopezn is reduced to the angle of reposezr . As the sand
below the angle of repose plays no part in the sandpile
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namics, we can takezr50, and refer to this state as ‘‘flat.’
Thus the first step in the redistribution process is

hn* 5hn11* 5~hn1hn11!/2,

where an asterisk denotes values after redistribution.
slopes then become

zn21* 5zn211zn/2,

zn* 50,

zn11* 5zn/21zn11 ,

as in conventional sandpile algorithms. However, if either
the neighboring nodes,n21 orn11, now becomes unstable
the behavior of our model differs from most algorithms
the literature. For instance, if the noden11 is unstable, the
subsequent redistribution occurs in such a way as to fla
theentireunstable region@n,n11# while conserving the to-
tal number of sand grains, i.e., the heights become

hn* 5hn11* 5hn12* 5~hn1hn111hn12!/3,

and the slopes

zn21* 5zn2112zn/31zn11/3,

zn* 5zn11* 50,

zn12* 5zn/312zn11/31zn12 .

If this makes either of the nodesn21 andn12 unstable, the
redistribution continues in a similar manner until the pile h
relaxed to a completely stable state. The relaxation is
sumed to occur on a time scale faster than that of exte
fueling, so that no sand is added to the pile until it has
laxed to a stable state. Note that the amount of sand in
pile is conserved in the redistribution process.

The present model can be viewed as a special case
more general sandpile algorithm that we have described
lier @3#. The latter includes a free parametery that permits a
probabilistic spread in the value ofzc , and yields interesting
results with potentially wide physical applications@4–6#.
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The sandpile considered in the present paper is equivale
that of Ref. @3# in the particularly simple limit where the
critical gradient is sharply defined~the limit y→`).

The fueling is assumed to occur only at the noden51.
Thus neither the redistribution nor the fueling contains a
randomness, and the system is completely deterministic.
dynamics of the sandpile is then analytically tractable a
can be deduced from two basic considerations:~i! Each ava-
lanche begins at the first node of the pile,n51. ~ii ! The pile
can only conquer new ground, i.e., spread to previously
occupied positions at largen, by an avalanche involving the
last position in the existing pile. Immediately after an av
lanche, the pile is completely flat at all previously unsta
nodes. Thus after an avalanche involving the nodes 1<n
,N, all these nodes havezn50, andzN is increased by the
amount necessary to keep constant the total mass of
sandpile,

(
n51

`

hn5 (
n51

`

(
j 5n

`

zj5 (
n51

`

nzn .

In this case the redistribution rules imply

zn* 50, 0<n,N,

zN* 5
1

N (
n51

N

nzn ,

whereN is chosen as the smallest integer for which this n
zN does not exceedzc . Note that the division byN implies
that zN cannot be constrained to be an integer.

In order for the pile to spread horizontally, the entire p
must be involved in an avalanche. Suppose that the num
of occupied nodes~the ‘‘width’’ of the pile! immediately
after an avalanche that completely flattens the pile is equa
N@1, and that this number is considerably smaller than
maximum allowed width of the pile~so that there is no in-
teraction with the edge!. Since the pile is flat in the region
1<n,N, the heights at all these positions are identical, a
we normalize them to unity at this time:hn51 for 1<n
,N and hn50 for n.N. The total amount of sand in th
pile is then equal toN, and the energy of the pile is

EN
15(

1

N

hn
25N.

The pile is assumed to be fueled by grains of sand m
smaller than unity, and for convenience we also norma
the unit of time to the rate of fueling, so that one unit of sa
is added in unit time.~This corresponds to a large number
grains.! Thus the avalanche that we have just described
curs at the timet5N after the fueling began.

When the fueling atn51 commences again att.N, the
newly added sand builds a pile on top of the already exist
flattened pile. As long as no subsequent avalanche rea
the positionn5N, the dynamics of this buildup is exactl
the same as that before the avalanche, since the redistrib
algorithm is independent of the absolute height.~The redis-
tribution rules are unaffected by a transformationhn→hn
1const.) In other words, a pile identical to that before t
system-wide avalanche builds up across the upper surfac
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the flattened pile. At the timet52N, this pile experiences an
avalanche which is at first identical to that which occurred
t5N, but when it reaches the node atn5N, this node now
becomes unstable. The underlying material atn5N then
starts participating in the avalanche, which does not s
until the pile has spread ton52N, because the amount o
sand in the pile is now exactly twice that in the system at
5N, and the final state is flattened everywhere. The ene
after the event att52N is therefore

E2N
1 52N.

Now let us follow this chain of thought backwards in time.
is clear that an avalanche involving the entire pile doubles
width ~the number of positions withhn.0). Immediately
beforet5N, the pile therefore had a width ofN/2, and im-
mediately beforet5N/2 its width wasN/4, and so on. As
has already been described, during the time intervalN,t
,2N, a pile the same as that created during 0,t,N builds
up on top of the flattened pile created att5N, for which
hn51, 1<n,N. By analogy, it then follows that immedi
ately aftert53N/2, the sandpile consists of a flat ‘‘groun
floor’’ of width N, upon which rests a smaller flat pile o
width N/2 and unit height~similar to that which existed a
t5N/2)—see Fig. 1. Further addition of sand beyondt
53N/2 builds on top of this second, or ‘‘first floor,’’ story.

The process iterates in a self-similar manner, and i
clear that just before the system-wide avalanche att52N,
the pile is as shown in Fig. 2. It consists of a flat, grou
floor of lengthN; on top of that there is a first floor of lengt
N/2; on top of this rests a second floor of lengthN/4; and so
on. All these stories are of unit height. Analogously, ju
before t5N, the sandpile had the same shape, but with
horizontal dimensions scaled down by a factor of 2.

To describe the shape of the sandpile at arbitraryt, it is
useful to pass to the continuum limit, whereN is very large
and the horizontal coordinate along the pile~x! can be de-
fined as a continuous variable replacing the former disc

FIG. 1. The shape of the sandpile just after the avalanchet
53N/2.

FIG. 2. The shape of the sandpile just before the system-w
avalanche att52N.
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node labeln. We scalex so that the pile occupies the interv
0,x,1 just aftert5N, and introduce a normalized unit o
time s, such thats51 whent5N. The shape of the sandpil
can then be related to the binary representation ofs in a
simple way. The instant just aftert5N corresponds tos
51.0, while the instant just beforet5N corresponds tos
50.111 . . . . If we let h(x,s) represent the height of th
sandpile, we have

h~x,1.0!51, 0,x,1,

while at s50.111 . . . thepile resembles an infinitely high
staircase with increasingly narrow steps, as in Fig. 2, and
bottom step extending tox5 1

2 :

h~x,0.111 . . . !5n, 22~n11!,x,22n ~0<n<`!.

By the same argument we may use the binary series exp
sion for an arbitrary time,

s5 (
n52`

`

sn22n,

where sn50 for all n smaller than some finite integer, t
write the shape of the pile as

h~x,s!5(
j <n

sj , 22~n11!,x,22n. ~1!

We are now in a position to calculate the normalized ene
of the pile as a function of time,

E~s!5E
0

`

h2~x,s!dx,

by summing the contributions from each horizontal segm
22(n11),x,22n. Since the width of such a segment
22(n11), the total energy of the pile is

E~s!5 (
n,`

22~n11!S (
j <n

sj D 2

.

By writing this sum as

E~s!5 (
n,`

22~n11!(
j <n

sj S sj12(
k, j

skD
5 (

j ,`
sj (

n5 j

`

22~n11!S sj12(
k, j

skD ,

and noting thatsj
25sj sincesj50 or 1, the summations with

respect ton can be evaluated, giving

E~s!5s12(
j ,`

22 j sj(
j .k

sk .

Finally, interchanging the summation with respect toj andk,
and defining@s#k as the value ofs when truncated tok binary
places,

@s#k5(
j <k

sj2
2 j ,
ts

s-

y

t

we can write the energy as

E~s!5s12 (
k,`

sk~s2@s#k!. ~2!

The first term describes the average, linear increase of en
with time, and the second the fluctuations, including a
lanches, which occur at every instant of time. Indeed,
avalanche occurs whenever a digitsk in the binary represen
tation ofs changes, and the size of the avalanche is relate
k. Large avalanches are associated with smallk, small ones
with large k. Figure 3 shows a plot of energy versus tim
Note that it is a continuous, but nowhere differentiable, fun
tion.

Let us now determine the distribution function of av
lanche sizes. It follows from Eq.~2! that the energy release
in the avalanche ats5 1

2 is equal to unity,

DE~ 1
2 !5E~0.01111 . . . !2E~0.1000 . . . !51.

It follows from the self-similarity argument above, and al
from Eq.~2!, that the avalanche ats5 1

4 dissipates half of this

energy,DE( 1
4 )5 1

2 . On the other hand, the avalanche ats
5 3

4 is exactly as large as that ats5 1
4 since the only differ-

ence is that they cause spreading across ‘‘floors’’ at differ
heights: the avalanche ats5 1

4 spreads the sandpile on th
ground, whereas that ats5 3

4 occurs on the ‘‘first floor’’ but
is otherwise the same. Figure 4 shows the energy release
avalanches,DE, as a function of time, and it is clear that

DE~s!5212n,

where n is the position of the leftmost digit in the binar
representation ofs that changes at the time of the avalanch
i.e., the smallest integer such thatsk51 for all k.n. It also
follows that avalanches of any particular size are exac
twice as common as those of twice that size. The probab
distribution of avalanche sizes is thus an inverse power
distribution,

FIG. 3. The energy of the sandpile vs normalized time@Eq. ~2!#.

FIG. 4. Energy release in avalanches vs normalized time.
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P~DE!}1/DE.

Since in our model the sandpile grows indefinitely across
infinite ‘‘table,’’ it never reaches a steady state. If the syst
was finite, with an open boundary atx5L, the behavior
would be periodic with a period equal to the smallest pow
of 2 larger thanL. For example, suppose 2N21,L,2N; for
s,2N the system would behave as described above, whil
s52N a major avalanche would completely empty the sa
pile. Hence the period would be 2N. It is worth noting that
the energy dissipated in this avalanche isDE52N11, and
thus scales linearly, rather than quadratically, with the s
tem sizeL. This has do to with the fact that the avera
height of the sandpile does not increase withL. ~Half the
time the height of the pile is 1, one quarter of the time it is
and so on, independently ofL.! As the mass*h(x,t)dx of
the pile increases linearly with time, the mass leaving
system in each system-emptying avalanche is equal to
period, which is 2N and thus scales linearly withL.

Not only the energy distribution of the internal av
lanches, but also the Fourier spectrum in the time dom
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~the coefficients of the Fourier series! of the avalanches in
the finite sandpile, is an inverse power law. To see this,
take a finite sandpile of the type we have just discussed
length 1

2 ,L,1, so that the period is equal to unity. Consid
the infinite series ofd functions representing the energy r
leased in the sequence of avalanches shown in Fig. 4,

q~s!52d~s!1d~s21/2!1 1
2 @d~s21/4!1d~s23/4!#

1 1
4 @d~s21/8!1d~s23/8!1d~s25/8!1d~s27/8!#

1¯ .

The Fourier series representation of this periodic funct
has coefficients

cn5E
0

1

q~s!einps ds,

By rearranging the terms in the expression forq(s), we ob-
tain
cn511 1
2 ~11einp/2!1 1

4 ~11einp/41e2inp/41e3inp/4!1¯5 (
N50

`

22N (
k50

2N21

exp~ iknp22N!.
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It follows from this expression thatcn vanishes ifn is even,
and is equal to

cn5(
N

212N

12exp~ inp22N!

for odd n. Since

lim
N→`

212N

12exp~ inp22N!
5

2i

np
,

this sum does not converge, and, strictly speaking, the F
rier series representation does not exist in the continu
limit we are considering where the sand grains are infinite
mally small. However, if the grains added to the pile hav
small but finite size, the sum should be truncated at so
large but finiteN corresponding to this size, and it follow
from the above thatcn}1/n. In other words, the Fourie
coefficients of the finite-sandpile avalanche energy sig
follow a power law with index21 ~a ‘‘1/ f spectrum’’! in the
time domain.
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Most sandpile models in the literature are difficult to an
lyze analytically, so that much of the present understand
of sandpile models is derived from numerical simulations.
this paper, we have constructed a simple mathematical m
of a sandpile that shares many features of the conventi
models, such as external fueling, uniform and invariant cr
cal gradient, local redistribution, and post-avalanche flatt
ing at participating nodes. The pile grows by fractal av
lanching on all scales, and yet is completely analytica
tractable. This result sheds some light on the links betw
sandpile models@7,8# self-organized criticality@9–11# pre-
dictability, fractality, and determinism@12–14#. Equation~1!
above gives the shape of the sandpile at any time, and Eq~2!
represents its energy. The latter yields a time series that c
bines fractal and scale-free properties, sometimes take
evidence for SOC. For instance, both the avalanche en
distribution and the finite-sandpile avalanche time ser
have 1/f spectra. We have shown that this system can
understood completely without implementing a numeri
cellular automaton algorithm.
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